These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Urinary metabolites of leukotriene B4 in the human subject.
    Author: Berry KA, Borgeat P, Gosselin J, Flamand L, Murphy RC.
    Journal: J Biol Chem; 2003 Jul 04; 278(27):24449-60. PubMed ID: 12709426.
    Abstract:
    Leukotriene B4 (LTB4) is a potent chemoattractant for neutrophils and is thought to play a role in a variety of inflammatory responses in humans. The metabolism of LTB4 in vitro is complex with several competing pathways of biotransformation, but metabolism in vivo, especially for normal human subjects, is poorly understood. As part of a Phase I Clinical Trial of human tolerance to LTB4, four human subjects were injected with 150 nmol/kg LTB4 with one additional subject as placebo control. The urine of the subjects was collected in two separate pools (0-6 and 7-24 h), and aliquots from these urine collections were analyzed using high performance liquid chromatography, UV spectroscopy, and negative ion electrospray ionization tandem mass spectrometry for metabolites of LTB4. In the current investigation, 11 different metabolites of LTB4 were identified in the urine from those subjects injected with LTB4, and none were present in the urine from the placebo-injected subject. The unconjugated LTB4 metabolites found in urine were structurally characterized as 18-carboxy-LTB4, 10,11-dihydro-18-carboxy-LTB4, 20-carboxy-LTB4, and 10,11-dihydro-20-carboxy-LTB4. Several glucuronide-conjugated metabolites of LTB4 were characterized including 17-, 18-, 19-, and 20-hydroxy-LTB4, 10-hydroxy-4,6,12-octadecatrienoic acid, LTB4, and 10,11-dihydro-LTB4. The amount of LTB4 glucuronide (16.7-29.4 pmol/ml) and 20-carboxy-LTB4 (18.9-30.6 pmol/ml) present in the urine of subjects injected with LTB4 was determined using an isotope dilution mass spectrometric assay before and after treatment of the urine samples with beta-glucuronidase. The urinary metabolites of LTB4 identified in this investigation were excreted in low amounts, yet it is possible that one or more of these metabolites could be used to assess LTB4 biosynthesis following activation of the 5-lipoxygenase pathway in vivo.
    [Abstract] [Full Text] [Related] [New Search]