These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Diminished heme oxygenase potentiates cell death: pyrrolidinedithiocarbamate mediates oxidative stress.
    Author: Malaguarnera L, Quan S, Pilastro MR, Abraham NG, Kappas A.
    Journal: Exp Biol Med (Maywood); 2003 May; 228(5):459-65. PubMed ID: 12709569.
    Abstract:
    Pyrrolidinedithiocarbamate (PDTC) is a metal-chelating compound that exerts both pro-oxidant and antioxidant effects and is widely used as an antitumor and anti-inflammatory agent. Heme oxygenase-1 (HO-1) is a redox-sensitive-inducible protein that provides efficient cytoprotection against oxidative stress. Because it has been reported that several angiogenic stimulating factors upregulating HO-1 in endothelial cells cause a significant increase in angiogenesis, we investigated the effect of PDTC on cell proliferation and angiogenesis and the effect of overexpression and underexpression of HO-1. The evaluation of PDTC (20 or 50 micro M) in endothelial cells resulted in significant increase in HO-1 mRNA and protein (P < 0.001), but a decrease in cell proliferation. Pretreatment of endothelial cells with SnCl(2) (10 micro M), an inducer of HO-1 attenuated the PDTC-mediated decrease in cell proliferation (P < 0.05). In contrast, pretreatment with SnMP, an inhibitor of HO activity, magnified the inhibiting effect of PDTC on cell proliferation. Upregulation of HO-1 gene expression by retrovirus-mediated delivery of the human HO-1 gene also attenuated the PDTC-induced decrease in cell proliferation. Underexpression of HO-1, by delivery of the human HO-1 in antisense orientation, enhanced the PDTC-mediated decrease in cell proliferation. The decrease, by PDTC, in proliferation of cells underexpressing HO-1 is related to an increase in O(-)(2) production. Collectively, these results demonstrate that upregulation of HO-1 was able to attenuate the PDTC-mediated cell proliferation, but was unable to reverse the high concentration of PDTC-induced decrease in angiogenesis.
    [Abstract] [Full Text] [Related] [New Search]