These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Endothelium dysfunction in LDL receptor knockout mice: a role for H2O2. Author: Rabelo LA, Cortes SF, Alvarez-Leite JI, Lemos VS. Journal: Br J Pharmacol; 2003 Apr; 138(7):1215-20. PubMed ID: 12711621. Abstract: 1. In this study, the role of endogenous H(2)O(2) as an endothelium-dependent relaxant factor was characterised in aortas from C57BL/6J and LDL receptor-deficient mice (LDLR(-/-)). 2. Aortic rings from LDLR(-/-) mice showed impaired endothelium-dependent relaxation to acetylcholine (ACh; 0.001-100 micro M) and to the Ca(2+) ionophore A23187 (0.001-3 micro M) compared with aortic rings from control mice. Endothelium-independent relaxation produced by the NO donor, 3-morpholino-sydnonimine (SIN-1) was not different between strains. 3. Pretreatment of vessels with L-NNA (100 micro M) or L-NNA (100 micro M) plus L-NAME (300 micro M) plus haemoglobin (10 micro M) markedly decreased, but did not abolish the relaxation to ACh in control mice. In the aortas from LDLR(-/-) mice treated with L-NNA (100 micro M), ACh induced a contractile effect. Catalase (800 and 2400 U ml(-1)) shifted to the right the endothelium-dependent relaxation to ACh in aortas from control but not from LDLR(-/-) mice. Aminotriazole (50 mM), which inhibits catalase, abolished its effect on control mice. Treatment of vessels with L-NNA and catalase abolished vasorelaxation induced by ACh. Indomethacin (10 micro M) did not modify the concentration-response curve to ACh. Superoxide dismutase (300 U ml(-1)) did not change ACh-induced relaxation in both strains. 4. Exogenous H(2)O(2) produced a concentration-dependent relaxation in endothelium-denuded aortic rings, which was not different between strains. 5. It is concluded that H(2)O(2) greatly contributes to relaxation to ACh in aorta from control mice. Endothelial-dependent relaxation to ACh is impaired in LDLR(-/-) mice. Reduced biosynthesis or increased inactivation of H(2)O(2) is the possible mechanism responsible for endothelial dysfunction in aortas of atherosclerosis-susceptible LDLR(-/-) mice.[Abstract] [Full Text] [Related] [New Search]