These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Choroidal blood flow during exercise-induced changes in the ocular perfusion pressure. Author: Lovasik JV, Kergoat H, Riva CE, Petrig BL, Geiser M. Journal: Invest Ophthalmol Vis Sci; 2003 May; 44(5):2126-32. PubMed ID: 12714652. Abstract: PURPOSE: The high metabolic rate of the human retina is supported by the choroidal vasculature. Knowledge of the normal choroidal blood flow (ChBF) responses to various physiological stimuli is therefore highly important if the pathophysiology of ocular diseases involving the choroid is to be understood better. In the present study, the hemodynamic responses of the subfoveal ChBF were examined during and after an exercise-induced increase in the ocular perfusion pressure (OPP). METHODS: Twenty-six healthy volunteers, 19 to 55 years of age participated in this two-phase study. Each subject increased resting OPP through stationary biking at a heart rate (HR) of 140 beats per minute (bpm) over 20 minutes. The ChBF was measured by laser Doppler flowmetry (LDF), the systemic BP by electronic sphygmomanometry, and the resting intraocular pressure (IOP) by applanation tonometry. RESULTS: The OPP increased by approximately 43% at the onset of biking, and then decreased biphasically to approximately 12% above resting value by the end of biking. The ChBF remained within 10% of its basal value throughout biking. Immediately after biking, the OPP decreased twice as much as the ChBF in the same time frame. CONCLUSIONS: The dissociation between the OPP and the ChBF during biking and recovery suggests that some mechanism keeps the ChBF close to its basal value, an observation that indicates blood flow regulation.[Abstract] [Full Text] [Related] [New Search]