These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Genetic and environmental components of variation in eumelanin and phaeomelanin sex-traits in the barn owl. Author: Roulin A, Dijkstra C. Journal: Heredity (Edinb); 2003 May; 90(5):359-64. PubMed ID: 12714980. Abstract: Knowledge of the mechanism underlying the expression of melanin-based sex-traits may help us to understand their signalling function. Potential sources of inter-individual variation are the total amount of melanins produced but also how biochemical precursors are allocated into the eumelanin and phaeomelanin pigments responsible for black and reddish-brown colours, respectively. In the barn owl (Tyto alba), a eumelanin trait (referred to as 'plumage spottiness') signals immunocompetence towards an artificially administrated antigen and parasite resistance in females, whereas a phaeomelanin trait ('plumage coloration') signals investment in reproduction in males. This raises the question whether plumage coloration and spottiness are expressed independent of each other. To investigate this question, we have studied the genetics of these two plumage traits. Crossfostering experiments showed that, for each trait, phenotypic variation has a strong genetic component, whereas no environmental component could be detected. Plumage coloration is autosomally inherited, as suggested by the similar paternal-to-maternal contribution to offspring coloration. In contrast, plumage spottiness may be sex-linked inherited (in birds, females are heterogametic). That proposition arises from the observation that sons resembled their mother more than their father and that daughters resembled only their father. Despite plumage coloration and spottiness signalling different qualities, these two traits are not inherited independent of each other, darker birds being spottier. This suggests that the extent to which coloration and spottiness are expressed depends on the total amount of melanin produced (with more melanin leading to a both darker and spottier plumage) rather than on differential allocation of melanin into plumage coloration and spottiness (in such a case, darker birds should have been less spotted). A gene controlling the production of melanin pigments may be located on sex-chromosomes, since the phenotypic correlation between coloration and spottiness was stronger in males than in females.[Abstract] [Full Text] [Related] [New Search]