These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Impaired beta-adrenergic response and decreased L-type calcium current of hypertrophied left ventricular myocytes in postinfarction heart failure.
    Author: Saraiva RM, Chedid NG, Quintero H CC, Díaz G LE, Masuda MO.
    Journal: Braz J Med Biol Res; 2003 May; 36(5):635-48. PubMed ID: 12715084.
    Abstract:
    Infarct-induced heart failure is usually associated with cardiac hypertrophy and decreased -adrenergic responsiveness. However, conflicting results have been reported concerning the density of L-type calcium current (I Ca(L)), and the mechanisms underlying the decreased -adrenergic inotropic response. We determined I Ca(L) density, cytoplasmic calcium ([Ca2+]i) transients, and the effects of -adrenergic stimulation (isoproterenol) in a model of postinfarction heart failure in rats. Left ventricular myocytes were obtained by enzymatic digestion 8-10 weeks after infarction. Electrophysiological recordings were obtained using the patch-clamp technique. [Ca2+]i transients were investigated via fura-2 fluorescence. -Adrenergic receptor density was determined by [ H]-dihydroalprenolol binding to left ventricle homogenates. Postinfarction myocytes showed a significant 25% reduction in mean I Ca(L) density (5.7 0.28 vs 7.6 0.32 pA/pF) and a 19% reduction in mean peak [Ca2+]i transients (0.13 0.007 vs 0.16 0.009) compared to sham myocytes. The isoproterenol-stimulated increase in I Ca(L) was significantly smaller in postinfarction myocytes (Emax: 63.6 4.3 vs 123.3 0.9% in sham myocytes), but EC50 was not altered. The isoproterenol-stimulated peak amplitude of [Ca2+]i transients was also blunted in postinfarction myocytes. Adenylate cyclase activation through forskolin produced similar I Ca(L) increases in both groups. -Adrenergic receptor density was significantly reduced in homogenates from infarcted hearts (Bmax: 93.89 20.22 vs 271.5 31.43 fmol/mg protein in sham myocytes), while Kd values were similar. We conclude that postinfarction myocytes from large infarcts display reduced I Ca(L) density and peak [Ca2+]i transients. The response to -adrenergic stimulation was also reduced and was probably related to -adrenergic receptor down-regulation and not to changes in adenylate cyclase activity.
    [Abstract] [Full Text] [Related] [New Search]