These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Recombinant RNase Z does not recognize CCA as part of the tRNA and its cleavage efficieny is influenced by acceptor stem length. Author: Schiffer S, Rösch S, Marchfelder A. Journal: Biol Chem; 2003 Mar; 384(3):333-42. PubMed ID: 12715884. Abstract: One of the essential maturation steps to yield functional tRNA molecules is the removal of 3'-trailer sequences by RNase Z. After RNase Z cleavage the tRNA nucleotidyl transferase adds the CCA sequence to the tRNA 3'-terminus, thereby generating the mature tRNA. Here we investigated whether a terminal CCA triplet as 3'-trailer or embedded in a longer 3'-trailer influences cleavage site selection by RNase Z using three activities: a recombinant plant RNase Z, a recombinant archaeal RNase Z and an RNase Z active wheat extract. A trailer of only the CCA trinucleotide is left intact by the wheat extract RNase Z but is removed by the recombinant plant and archaeal enzymes. Thus the CCA triplet is not recognized by the RNase Z enzyme itself, but rather requires cofactors still present in the extract. In addition, we investigated the influence of acceptor stem length on cleavage by RNase Z using variants of wild-type tRNATyr. While the wild type and the variant with 8 base pairs in the acceptor stem were processed efficiently by all three activities, variants with shorter and longer acceptor stems were poor substrates or were not cleaved at all.[Abstract] [Full Text] [Related] [New Search]