These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: BeKm-1 is a HERG-specific toxin that shares the structure with ChTx but the mechanism of action with ErgTx1.
    Author: Zhang M, Korolkova YV, Liu J, Jiang M, Grishin EV, Tseng GN.
    Journal: Biophys J; 2003 May; 84(5):3022-36. PubMed ID: 12719233.
    Abstract:
    Peptide toxins with disulfide-stabilized structures have been used as molecular calipers to probe the outer vestibule structure of K channels. We want to apply this approach to the human ether-a-go-go-related gene (HERG) channel, whose outer vestibule is unique in structure and function among voltage-gated K channels. Our focus here is BeKm-1, a HERG-specific peptide toxin that can suppress HERG in the low nM concentration range. Although BeKm-1 shares the three-dimensional scaffold with the well-studied charybdotoxin, the two use different mechanisms in suppressing currents through their target K channels. BeKm-1 binds near, but not inside, the HERG pore, and it is possible that BeKm-1-bound HERG channels can conduct currents although with markedly altered voltage-dependence and kinetics of gating. BeKm-1 and ErgTx1 differ in three-dimensional scaffold, but the two share mechanism of action and have overlapping binding sites on the HERG channel. For both, residues in the middle of the S5-P linker (the putative 583-597 helix) and residues at the pore entrance are critical for binding, although specific contact points vary between the two. Toxin foot printing using BeKm-1 and ErgTx1 will likely provide complementary information about the unique outer vestibule structure of the HERG channel.
    [Abstract] [Full Text] [Related] [New Search]