These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: In vitro evolution of an RNA-cleaving DNA enzyme into an RNA ligase switches the selectivity from 3'-5' to 2'-5'. Author: Flynn-Charlebois A, Prior TK, Hoadley KA, Silverman SK. Journal: J Am Chem Soc; 2003 May 07; 125(18):5346-50. PubMed ID: 12720447. Abstract: Deoxyribozymes that ligate RNA expand the scope of nucleic acid catalysis and allow preparation of site-specifically modified RNAs. Previously, deoxyribozymes that join a 5'-hydroxyl and a 2',3'-cyclic phosphate were identified by in vitro selection from random DNA pools. Here, the alternative strategy of in vitro evolution was used to transform the 8-17 deoxyribozyme that cleaves RNA into a family of DNA enzymes that ligate RNA. The parent 8-17 DNA enzyme cleaves native 3'-5' phosphodiester linkages but not 2'-5' bonds. Surprisingly, the new deoxyribozymes evolved from 8-17 create only 2'-5' linkages. Thus, reversing the direction of the DNA-mediated process from ligation to cleavage also switches the selectivity in forming the new phosphodiester bond. The same change in selectivity was observed upon evolution of the 10-23 RNA-cleaving deoxyribozyme into an RNA ligase. The DNA enzymes previously isolated from random pools also create 2'-5' linkages. Therefore, deoxyribozyme-mediated formation of a non-native 2'-5' phosphodiester linkage from a 5'-hydroxyl and a 2',3'-cyclic phosphate is strongly favored in many different contexts.[Abstract] [Full Text] [Related] [New Search]