These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Extracellular ATP-induced calcium channel inhibition mediated by P1/P2Y purinoceptors in hamster submandibular ganglion neurons. Author: Abe M, Endoh T, Suzuki T. Journal: Br J Pharmacol; 2003 Apr; 138(8):1535-43. PubMed ID: 12721109. Abstract: 1. The presence and profile of purinoceptors in neurons of the hamster submandibular ganglion (SMG) have been studied using the whole-cell configuration of the patch-clamp technique. 2. Extracellular application of adenosine 5'-triphosphate (ATP) reversibly inhibited voltage-dependent Ca(2+) channel (VDCC) currents (I(Ca)) via G(i/o)-protein in a voltage-dependent manner. 3. Extracellular application of uridine 5'-triphosphate (UTP), 2-methylthioATP (2-MeSATP), alpha,beta-methylene ATP (alpha,beta-MeATP) and adenosine 5'-diphosphate (ADP) also inhibited I(Ca). The rank order of potency was ATP=UTP>ADP>2-MeSATP=alpha,beta-MeATP. 4. The P2 purinoceptor antagonists, suramin and pyridoxal-5-phosphate-6-azophenyl-2', 4'-disulfonic acid (PPADS), partially antagonized the ATP-induced inhibition of I(Ca), while coapplication of suramin and the P1 purinoceptor antagonist, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), virtually abolished I(Ca) inhibition. DPCPX alone partially antagonized I(Ca) inhibition. 5. Suramin antagonized the UTP-induced inhibition of I(Ca), while DPCPX had no effect. 6. Extracellular application of adenosine (ADO) also inhibited I(Ca) in a voltage-dependent manner via G(i/o)-protein activation. 7. Mainly N- and P/Q-type VDCCs were inhibited by both ATP and ADO via G(i/o)-protein betagamma subunits in seemingly convergence pathways.[Abstract] [Full Text] [Related] [New Search]