These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Threonine-205 in the F helix of p450 2B1 contributes to androgen 16 beta-hydroxylation activity and mechanism-based inactivation.
    Author: Lin HL, Zhang H, Waskell L, Hollenberg PF.
    Journal: J Pharmacol Exp Ther; 2003 Aug; 306(2):744-51. PubMed ID: 12721329.
    Abstract:
    Four mutants of Thr-205 in cytochrome p450 2B1 were constructed and expressed in Escherichia coli. The Ser-, Ala-, and Val-mutants displayed stable reduced CO difference spectra and were able to metabolize 7-ethoxy-4-(trifluoromethyl)coumarin, testosterone, androstenedione, and benzphetamine. The Arg-mutant displayed an unstable reduced CO difference spectrum at 450 nm, was concomitantly converted to a denatured form with a peak at 422 nm, and showed no catalytic activity with any of the four substrates tested. The Ser-mutant displayed activity and metabolite profiles for testosterone and androstenedione similar to those of the wild-type p450 2B1 (WT). Substitution of Thr-205 with Ala or Val markedly suppressed the 16 beta-hydroxylation activity but exhibited little effect on the 16 alpha-hydroxylation activity for testosterone and androstenedione. Because 16 beta-hydroxylation activity of androgens is a specific p450 2B subfamily marker and residue 205 is located in the F helix, which forms the ceiling of the active site, we postulate that the gamma-hydroxyl side chain of Thr may play an important role in directing the 16 beta-face of testosterone and androstenedione toward the active site. Surprisingly, the Val-mutant retained full activity for benzphetamine demethylation. When mechanism-based inactivators for p450 2B1 were used to evaluate the susceptibility to inactivation, the Val-mutant was resistant to inactivation by 17 alpha-ethynylestradiol and less sensitive to inactivation by 2-ethynylnaphthalene compared with the WT enzyme. Our results demonstrate the importance of Thr-205 in determining substrate specificity and product formation as well as in influencing the susceptibility of p450 2B1 to mechanism-based inactivators.
    [Abstract] [Full Text] [Related] [New Search]