These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Nuclear factor Y and steroidogenic factor 1 physically and functionally interact to contribute to cell-specific expression of the mouse Follicle-stimulating hormone-beta gene.
    Author: Jacobs SB, Coss D, McGillivray SM, Mellon PL.
    Journal: Mol Endocrinol; 2003 Aug; 17(8):1470-83. PubMed ID: 12730328.
    Abstract:
    FSH is a heterodimeric glycoprotein hormone secreted from the gonadotrope cell population of the anterior pituitary. Despite its crucial role in mammalian reproduction, very little is known about regulation of the FSH beta-subunit gene at the molecular level. In this report, we examine the basis for cell-specific expression of FSH beta using the mouse L beta T2 and alpha T3-1 gonadotrope-derived cell lines. Characterization of the hormonal content of L beta T2 and alpha T3-1 cells at the protein level classifies these cells as relatively mature and immature gonadotropes, respectively. We studied L beta T2 cell-specific expression of FSH beta using 398 bp of the mouse FSH beta regulatory region linked to a luciferase reporter gene in transient transfection assays. This mouse FSH beta promoter can direct reporter gene expression specifically to L beta T2 cells when compared with other pituitary- and non-pituitary-derived cell lines, including alpha T3-1 cells. Furthermore, it is induced by activin, and interruption of the autocrine activin loop in L beta T2 cells by the addition of follistatin reduces its expression. Truncation analysis indicates that several regions of the promoter are involved in this specificity and that these can be dissociated from activin regulation. We identify binding sites for the orphan nuclear receptor steroidogenic factor-1 and the heterotrimeric transcription factor nuclear factor Y and show that these elements functionally interact to regulate FSH beta gene expression in an L beta T2 cell-specific manner. Moreover, steroidogenic factor-1 and nuclear factor Y are shown to physically interact with each other. This study is the first to demonstrate the presence of basal FSH beta protein in L beta T2 cells and to identify specific elements within the FSH beta promoter that contribute to basal and cell-specific expression of the gene.
    [Abstract] [Full Text] [Related] [New Search]