These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Endothelium and myocyte cellular insulin receptor alterations in a rat model of myocardial infarction.
    Author: Jaroudi WA, Jurjus AR, El-Sabban ME, Kamal MT, Bitar KM, Bikhazi AB.
    Journal: Can J Physiol Pharmacol; 2003 Mar; 81(3):267-73. PubMed ID: 12733825.
    Abstract:
    Ischemic heart disease is considered to be one of the leading causes of death in adults. While extensive research on mechanisms contributing to the pathogenesis of myocardial infarction (MI) has been underway, it is not known whether insulin receptor characteristics and postreceptor signaling have been fully addressed as yet. Present work attempts to investigate whether the remodeling process effectively induces alteration(s) in insulin-binding characteristics at the coronary endothelium and cardiomyocytes using a rat heart model of MI. MI was induced by ligation of the left anterior descending coronary artery of adult male Sprague-Dawley rats. Two animal groups were used in the study: (i) sham-operated CHAPS-untreated and CHAPS-treated, and (ii) MI CHAPS-untreated and MI CHAPS-treated. A physical model describing 1:1 stoichiometry of reversible insulin binding to its receptors present on the endothelium and at cardiomyocytes after CHAPS treatment was considered for data analysis. Quantitation of the collected effluents after heart perfusion, the inlet at the aortic and outlet at the coronary sinus sites, were curve fitted using a first-order Bessel function, which determines the binding constants (k(n)), the reversible constant (k(-n)), the dissociation constant (k(d) = k(-n)/k(n)), and the residency time constant (tau = 1/k(-n)). In addition, hearts were excised, separated into right and left ventricles, and individually weighed, and areas of infarcted regions were measured. Results of the MI group showed significant increases in relative heart mass, left ventricle mass, and right ventricle mass normalized to total body mass. MI induced severe ischemia and irreversible myocardial injury as assessed by planimetry and histologic studies. The data showed differences in insulin receptor affinities at the endothelial and cardiac myocytes in the sham and in the MI-operated rats. The observed reduction in the binding affinity of insulin at the myocyte postinfarction may explain the pathogenic role of insulin in ischemic heart disease and, hence, resistance. Therefore, insulin administration during and post MI might be cardioprotective.
    [Abstract] [Full Text] [Related] [New Search]