These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Calcium influx via L- and N-type calcium channels activates a transient large-conductance Ca2+-activated K+ current in mouse neocortical pyramidal neurons.
    Author: Sun X, Gu XQ, Haddad GG.
    Journal: J Neurosci; 2003 May 01; 23(9):3639-48. PubMed ID: 12736335.
    Abstract:
    Ca2+-activated K+ currents and their Ca2+ sources through high-threshold voltage-activated Ca2+ channels were studied using whole-cell patch-clamp recordings from freshly dissociated mouse neocortical pyramidal neurons. In the presence of 4-aminopyridine, depolarizing pulses evoked transient outward currents and several components of sustained currents in a subgroup of cells. The fast transient current and a component of the sustained currents were Ca2+ dependent and sensitive to charybdotoxin and iberiotoxin but not to apamin, suggesting that they were mediated by large-conductance Ca2+-activated K+ (BK) channels. Thus, mouse neocortical neurons contain both inactivating and noninactivating populations of BK channels. Blockade of either L-type Ca2+ channels by nifedipine or N-type Ca2+ channels by omega-conotoxin GVIA reduced the fast transient BK current. These data suggest that the transient BK current is activated by Ca2+ entry through both N- and L-type Ca2+ channels. The physiological role of the fast transient BK current was also examined using current-clamp techniques. Iberiotoxin broadened action potentials (APs), indicating a role of BK current in AP repolarization. Similarly, both the extracellular Ca2+ channel blocker Cd2+ and the intracellular Ca2+ chelator BAPTA blocked the transient component of the outward current and broadened APs in a subgroup of cells. Our results indicate that the outward current in pyramidal mouse neurons is composed of multiple components. A fast transient BK current is activated by Ca2+ entry through high-threshold voltage-activated Ca2+ channels (L- and N-type), and together with other voltage-gated K+ currents, this transient BK current plays a role in AP repolarization.
    [Abstract] [Full Text] [Related] [New Search]