These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of iontophoresis and fatty acids on permeation of arginine vasopressin through rat skin. Author: Nair VB, Panchagnula R. Journal: Pharmacol Res; 2003 Jun; 47(6):563-9. PubMed ID: 12742012. Abstract: The aim of this study was to assess the effects of fatty acids and iontophoretic mode of penetration enhancement on transdermal delivery of Arginine Vasopressin (AVP). Sprague-Dawley (SD) rat skin was pretreated with fatty acids (e.g. 5% w/v, lauric acid, oleic acid, and linoleic acid in ethanol:water (EtOH:W, 2:1 system) for 2h and iontophoresis in vitro, separately or together. The results indicate that all fatty acids studied increased (P<0.05) the flux of AVP in comparison to control (not pretreated with enhancer) and their effectiveness in flux enhancement was comparable. Further, oleic acid in combination with iontophoresis significantly increased the permeation of AVP both in comparison to pretreatment with fatty acids and iontophoresis alone. However, iontophoresis did not further increase the permeation of AVP through linoleic acid pretreated skin. Fourier transform infrared (FT-IR) spectroscopic studies revealed that EtOH:W (2:1) system is not effective in lipid extraction. The shift to higher wavenumbers of the symmetric and asymmetric stretching peaks at 2850 and 2920cm(-1) revealed that at the concentration used, oleic acid and linoleic acid caused fluidization of stratum corneum (SC) lipids. This study provides direct evidence that oleic acid in EtOH:W (2:1) system causes disruption of the SC lipid lamellae and that a combination of oleic acid with iontophoresis further enhances the effects of oleic acid in a synergistic manner.[Abstract] [Full Text] [Related] [New Search]