These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of organic acids on copper and cadmium desorption from contaminated soils. Author: Gao Y, He J, Ling W, Hu H, Liu F. Journal: Environ Int; 2003 Aug; 29(5):613-8. PubMed ID: 12742404. Abstract: A study was conducted to investigate the effect of organic acids on Cd and Cu desorption from natural contaminated soils (NCS) with permanent contamination by metal smelters and from artificial contaminated soils (ACS) derived from an artificial amendment of Cd to three representative zonal soils in Central China. Results showed that the desorption of Cd in either NCS or ACS, with the increment of tartrate or citrate concentration in desorption solution, can be characterized as a valley-like curve. The presence of tartrate or citrate at a low concentration (< or =0.5 mmol/l) inhibited Cd desorption from these two types of soils, whereas the presence of organic acids at high concentrations (> or =2 mmol/l for citrate and about > or =15 mmol/l for tartrate) apparently promoted Cd desorption. The desorption curve of Cu by tartrate solution with different tartrate concentrations can also be characterized as a valley-like curve, while the desorption of Cu in the presence of citrate was directly enhanced with the increment of citrate concentration. With the enhancement of initial pH value from 2 to 8 in the presence of citrate, Cu desorption ratio decreased at the first stage, then increased, and then decreased again. A valley and a peak sequentially appeared in the Cd or Cu desorption curve with initial pH value increment. Compared with citrate, the desorption ratio of Cd or Cu from NCS or ACS was directly decreased in the presence of tartrate, with the enhancement of the pH value from 2 to 8. Cd or Cu desorption was clearly enhanced when the electrolyte concentration of KNO3 or KCl increased in the presence of 2 mmol/l tartrate. Moreover, a higher desorption ratio of Cd or Cu was shown with KCl electrolyte than with KNO3 electrolyte with the same concentration. Based on these observations, we suggest that bioavailabilities of heavy metal can be promoted with selected suitable types and concentrations of organic acid amendment and reasonable field condition.[Abstract] [Full Text] [Related] [New Search]