These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Increased c-Fos expression in select lateral parabrachial subnuclei following chemical versus electrical stimulation of the dorsal periaqueductal gray in rats. Author: Hayward LF, Castellanos M. Journal: Brain Res; 2003 Jun 06; 974(1-2):153-66. PubMed ID: 12742633. Abstract: The parabrachial nucleus (PBN) is located in the rostral dorsolateral pons and has been identified as a critical relay for cardiovascular responses (sympathoexcitation and baroreflex attenuation) evoked by the dorsal periaqueductal gray (PAG). We examined the pattern of c-Fos protein immunoreactivity throughout the rostral-caudal extent of the PBN in four groups of anesthetized male Sprague-Dawley rats to identify the specific PBN regions activated by dorsal PAG stimulation. Both electrical stimulation and chemical (0.3 mM bicuculline methobromide) activation of the dorsal PAG elicited a selective increase in Fos-like immunoreactivity (FLI) in the superior lateral and central lateral subnuclei of the rostral lateral PBN (LPBN) relative to surgery and blood pressure control groups. In the middle LPBN chemical stimulation of the dorsal PAG selectively increased FLI in the central lateral subnucleus while electrical stimulation increased FLI in the Kolliker-Fuse area only. Finally, in the caudal LPBN only electrical stimulation of the dorsal PAG induced significant changes in FLI above control. Significant changes in FLI in the medial PBN were not observed under any experimental conditions. These results confirm neuroanatomical data demonstrating that neurons in superior lateral and central lateral subnuclei of the rostral and middle LPBN are the primary targets of the dorsal PAG. Our results also demonstrate that this descending projection to the central lateral and superior lateral subnuclei of the LPBN is in part excitatory. Finally, our results raise the possibility that neurons in the central lateral subnucleus of the middle and rostral LPBN are integrally involved in descending modulation of sympathetic drive associated with dorsal PAG activation.[Abstract] [Full Text] [Related] [New Search]