These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of insecticide synergists on microsomal oxidation of estradiol and ethynylestradiol and on microsomal drug metabolism.
    Author: Bolt HM, Kassel H.
    Journal: Xenobiotica; 1976 Jan; 6(1):33-8. PubMed ID: 1274368.
    Abstract:
    1. Oxidation of estradiol and ethynylestradiol at ring A and ring B by rat liver microsomes and NADPH-regenerating system in vitro is inhibited by the two arylimidazole insecticide synergists, 3-bromophenyl-4(5)-imidazole and 1-naphthyl-4(5)-imidazole, but not by the benzothiadiazole insectide synergists 6-nitro-1,2,3-benzothiadiazole and 5,6-dimethyl-1,2,3-benzothiadiazole. The Ki of the most potent inhibitor, 1-naphthyl-4(5)-imidazole, was 3 X 10(-6) M. 2. 6-Nitro-1,2,3-benzothiadiazole (10(-6) M), which did not inhibit hydroxylation of the estrogens, inhibited oxidation of aniline and demethylation of ethylmorphine, p-nitroanisole, and aminopyrine by 30-70%. 5,6-Dimethyl-1,2,3-benzothiadiazole inhibited only demethylation of p-nitroanisole and aminopyrine. From these results the presence of different hepatic microsomal mixed function oxidases may be inferred. 3. 1-Naphthyl-4(5)-imidazole, the most potent inhibitor of hydroxylation of drugs and estrogen rings A and B, also inhibited microsomal estrogen-16alpha-hydroxylation. 4. These data show that insecticide synergists may effect the breakdown of estrogenic hormones in the organism.
    [Abstract] [Full Text] [Related] [New Search]