These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: [Inhibiting scar formation in rat cutaneous wounds by blocking TGF-beta signaling].
    Author: Liu W, Chua CH, Wu XL, Wang DR, Yin DM, Cui L, Cao YL, Longaker MT.
    Journal: Zhonghua Yi Xue Za Zhi; 2003 Jan 10; 83(1):31-6. PubMed ID: 12757642.
    Abstract:
    OBJECTIVE: TGF-beta plays a key role in wound scarring. This study explored the possibility of using gene therapy to inhibit wound scarring by blocking TGF-beta signaling. METHODS: In vitro, human normal dermal fibroblasts were infected with recombinant adenoviruses of truncated TGF-beta receptor II (tTGF-betaRII, 100 pfu/cell) and beta-galactosidase (beta-gal, 100 pfu/cell), and their effects on regulating TGF-beta1 gene expression were analyzed by Northern blot. For gene therapy, beta-gal and tTGF-betaRII viruses (1 x 10(9) pfu)were injected intradermally at left and right side of dorsal skin of newborn Sprague-Dawley rats (n = 15) respectively. A full-thickness incisional wound (0.5 cm long) was created at the injection sites of each rat 2 days post-injection. An incisional wound was similarly created in the middle part of the dorsal skin of tTGF-betaRII transgenic mice (n = 5) and control mice (n = 5). Wound tissues of rats and mice were harvested at various time points post-wounding for histological and immunohistochemical analysis. Scar area in tissue section was measured by Image-Pro Plus software. RESULTS: Over-expression of tTGF-betaRII markedly reduced TGF-beta1 gene expression in dermal fibroblasts. Adenovirus mediated gene expression in skin reached a peak level 2 - 3 days post-injection, and decreased gradually at 5 - 7 days. Two weeks post-wounding, histology and quantitative analysis demonstrated that relative scar area in the wounds of transgenic mice and control mice were 136,969.8 +/- 66,339 and 474,641.6 +/- 227,396 respectively, the scar area of transgenic wounds was 29 percent of control area (P < 0.05). In all rats, wounds transfected with tTGF-betaRII gene healed with much less scarring (relative scar area 128,311.2 +/- 36,764.6) than control wounds (251,189.1 +/- 62,544.7) of the same rat, with a 45% reduction of scar area in average (P < 0.001). In addition, the tTGF-betaRII expression also decreased inflammation and TGF-beta1 production in treated wounds, and promoted the repair of panniculus muscle in treated wounds. CONCLUSIONS: Adenovirus mediated over-expression of tTGF-betaRII can block TGF-beta signaling and inhibit wound scarring, and thus can serve as a gene therapy strategy to control wound scarring.
    [Abstract] [Full Text] [Related] [New Search]