These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Functional analysis of PCCB mutations causing propionic acidemia based on expression studies in deficient human skin fibroblasts.
    Author: Pérez-Cerdá C, Clavero S, Pérez B, Rodríguez-Pombo P, Desviat LR, Ugarte M.
    Journal: Biochim Biophys Acta; 2003 May 20; 1638(1):43-9. PubMed ID: 12757933.
    Abstract:
    Propionic acidemia (PA) is a recessive disorder caused by a deficiency of propionyl-CoA carboxylase (PCC), a dodecameric enzyme composed of two different proteins alpha-PCC and beta-PCC, nuclear encoded by the PCCA and PCCB genes, respectively. Mutations in either gene cause PA and to date, up to 47 different allelic variations in the PCCB gene have been identified in different populations. In this work, we describe the expression studies of 18 PCCB sequence changes in order to elucidate their functional consequences. We have used a PCCB-deficient transformed fibroblast cell line to target the wild-type and mutant proteins to their physiological situation, analysing the effect of the mutations on PCC activity and protein stability. Of the 18 mutant proteins tested for activity, those carrying the L17M and A497V substitutions showed an activity similar to the wild-type one, which proves that these changes do not have any effect on protein activity. The other 16 mutant proteins exhibited two different functional behaviours, 3 retained substantial activity (K218R, R410W and N536D), and the remaining 13 proteins showed null or very low activity. Western blot analysis demonstrated instability only for the L519P, R512C and G112D mutant proteins. We have proved the pathogenicity of R67S, R165Q and G112D mutation in PCCB gene, expressed for the first time in this work. The information derived from the expression analysis is discussed in the phenotype and genotype context in order to improve the knowledge of this complex disease.
    [Abstract] [Full Text] [Related] [New Search]