These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Oral bioavailability and in vivo efficacy of the helicase-primase inhibitor BILS 45 BS against acyclovir-resistant herpes simplex virus type 1.
    Author: Duan J, Liuzzi M, Paris W, Liard F, Browne A, Dansereau N, Simoneau B, Faucher AM, Cordingley MG.
    Journal: Antimicrob Agents Chemother; 2003 Jun; 47(6):1798-804. PubMed ID: 12760851.
    Abstract:
    This study investigated the oral bioavailability and efficacy of BILS 45 BS, a selective herpes simplex virus (HSV) helicase-primase inhibitor, against acyclovir (ACV)-resistant (ACV(r)) infections mediated by the HSV type 1 (HSV-1) dlsptk and PAA(r)5 mutant strains. In vitro, the compound was more potent than ACV against wild-type clinical and laboratory HSV-1 strains and ACV(r) HSV isolates, as determined by a standard plaque reduction assay, with a mean 50% effective concentration of about 0.15 microM. The oral bioavailability of BILS 45 BS in hairless mice was 49%, with a peak concentration in plasma of 31.5 microM after administration of a single dose of 25 mg/kg. Following cutaneous infection of nude mice, both the HSV-1 dlsptk and PAA(r)5 mutant strains induced significant, reproducible, and persistent cutaneous lesions that lasted for more than 2 weeks. Oral treatment with ACV (100 or 125 mg/kg/day, three times a day by gavage) did not affect either mutant-induced infection. In contrast, BILS 45 BS at an oral dose of 100 mg/kg/day almost completely abolished cutaneous lesions mediated by both ACV(r) HSV-1 mutants. The 50% effective doses of BILS 45 BS were 56.7 and 61 mg/kg/day against dlsptk- and PAA(r)5-induced infections, respectively. Taken together, our results demonstrate very effective oral therapy of experimental ACV(r) HSV-1 infections in nude mice and support the potential use of HSV helicase-primase inhibitors for the treatment of nucleoside-resistant HSV disease in humans.
    [Abstract] [Full Text] [Related] [New Search]