These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Neuronal endoplasmic reticulum acts as a single functional Ca2+ store shared by ryanodine and inositol-1,4,5-trisphosphate receptors as revealed by intra-ER [Ca2+] recordings in single rat sensory neurones.
    Author: Solovyova N, Verkhratsky A.
    Journal: Pflugers Arch; 2003 Jul; 446(4):447-54. PubMed ID: 12764616.
    Abstract:
    We addressed the fundamentally important question of functional continuity of endoplasmic reticulum (ER) Ca(2+) store in nerve cells. In cultured rat dorsal root ganglion neurones we measured dynamic changes in free Ca(2+) concentration within the ER lumen ([Ca(2+)](L)) in response to activation of inositol-1,4,5-trisphosphate receptors (InsP(3)Rs) and ryanodine receptors (RyRs). We found that both receptors co-exist in these neurones and their activation results in Ca(2+) release from the ER as judged by a decrease in [Ca(2+)](L). Depletion of Ca(2+) stores following an inhibition of sarco(endoplasmic)reticulum Ca(2+)-ATPase by thapsigargin or cyclopiazonic acid completely eliminated Ca(2+) release via both InsP(3)Rs and RyRs. Similarly, when the store was depleted by continuous activation of InsP(3)Rs, activation of RyRs (by caffeine or 0.5 microM ryanodine) failed to produce Ca(2+) release, and vice versa, when the stores were depleted by activators of RyRs, the InsP(3)-induced Ca(2+) release disappeared. We conclude that in mammalian neurones InsP(3)Rs and RyRs share the common continuous Ca(2+) pool associated with ER.
    [Abstract] [Full Text] [Related] [New Search]