These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Proteins modulating TRP channel function. Author: Harteneck C. Journal: Cell Calcium; 2003; 33(5-6):303-10. PubMed ID: 12765677. Abstract: TRP channels are involved in different signaling cascades; TRP channels can be activated via hormones and neurotransmitter in a receptor/G-protein-mediated manner or by osmotic, thermic or mechanic stimuli. The overall functional role of TRP channels within these processes of hormonal cellular control, nociception or cellular calcium homeostasis is still unclear, as these complex processes often involve macromolecular structures. Whereas the integration of Drosophila TRP in the phototransduction process is becoming clear, the understanding of the participation of mammalian TRP channels in signal transduction complexes is only beginning. TRP channels have been demonstrated to interact with PDZ domain proteins, and both scaffold and regulatory function have been shown for INAD, the PDZ domain protein of the Drosophila phototransduction complex. In mammalian cells, the interaction of NHERF and TRPC4 has been shown and it is anticipated that NHERF may abolish the apparent store-dependent regulation of TRPC4 and TRPC5. Whereas TRP channels and PDZ domain proteins form permanent heterodimeric proteins, the interaction of calcium-binding proteins is dependent on the calcium concentration and is, therefore, dynamic. The prototype of calcium-binding protein used for experiments is calmodulin; whether or not calmodulin is also the natural interaction partner of TRP channels is an open question.[Abstract] [Full Text] [Related] [New Search]