These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Corpus callosum development in childhood-onset schizophrenia.
    Author: Keller A, Jeffries NO, Blumenthal J, Clasen LS, Liu H, Giedd JN, Rapoport JL.
    Journal: Schizophr Res; 2003 Jul 01; 62(1-2):105-14. PubMed ID: 12765750.
    Abstract:
    OBJECTIVE: Corpus callosum (CC) size and interhemispheric communication differences have been reported between patients with schizophrenia and normal controls. Childhood-onset schizophrenia (COS) is a severe form of the disorder that is continuous with later-onset disorder. Corpus callosal area was examined for COS at initial scan and prospectively through adolescence, and related to other developmental abnormalities for this group. METHOD: A total of 113 anatomic brain MRI scans were obtained from 55 COS (22 female) and 110 scans from 56 age- and gender-matched healthy volunteers (22 female), across ages 8-24. Baseline and prospective rescans were obtained at approximately 2-year intervals. The midsagittal areas for total corpus callosum and seven subregions were calculated using an automated system. Cross-sectional and longitudinal data were combined using mixed model regression analysis to compare developmental changes for the two groups. RESULTS: No diagnostic differences were seen at time of initial scan. Longitudinally, and in contrast to healthy volunteers, patients with schizophrenia showed a significant difference in developmental trajectory for the area of the splenium, both before (p=0.012) and after (p=0.05) adjustment for total cerebral volume. The area of the splenium becomes significantly smaller in COS, starting at about age 22. CONCLUSION: Patients with schizophrenia showed a significant difference in developmental trajectory for the splenial area, which seems to decline for COS. If replicated, this may reflect anticipated late occipital and extrastriate changes in brain regions.
    [Abstract] [Full Text] [Related] [New Search]