These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Glial cells and extracellular potassium: their relationship in mammalian cortex. Author: Futamachi KJ, Pedley TA. Journal: Brain Res; 1976 Jun 11; 109(2):311-22. PubMed ID: 1276917. Abstract: Simultaneous recordings were made of glial cell potentials and the extracellular potassium concentration ([K+]O) in cat cortex in an attempt to provide more quantitative information about the sensitivity of mammalian neuroglia to changes in [K+]O. A penicillin epileptogenic focus served to generate both transient and sustained elevations in [K+]O, thus allowing measurement of glial membrane potential (Vm) at both resting and increased [K+]O levels many times during the same experiment. Resting Vm averaged--92.6 +/- 10.9 mV for 33 glial cells. With each surface interictal spike, glial cells exhibited slow depolarizations averaging 18.4 +/- 6.5 mV which mirrored rises in [K+]O in many respects. Several discrepancies were found, however, between transient and focal rises in [K+]O and the associated glial cell depolarizations which made it difficult to determine accurately the effect of changes in [K+]O on glial Vm. For example, the amplitude of the glial depolarization caused by a single interictal discharge showed no constant relationship to depth below the cortical surface in contrast to the consistent laminar profile recorded by the K+ electrode. Thus, large glial membrane depolarizations could be recorded at times when there was little or no increase in measured [K+]O. Agreement between changes in [K+]O and glial cell depolarizations was closer to that predicted by the Nernst equation during sustained elevations in [K+]O such as occurred during ictal episodes ('seizures'). These findings may be related in part to methodology as a consequence of the different spatial relationships which exist between glial membrane, K+-electrode tip and released K+. In addition, though, they may indicate the presence of a functional glial syncytium.[Abstract] [Full Text] [Related] [New Search]