These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Constraints on supramolecular structure in amyloid fibrils from two-dimensional solid-state NMR spectroscopy with uniform isotopic labeling.
    Author: Tycko R, Ishii Y.
    Journal: J Am Chem Soc; 2003 Jun 04; 125(22):6606-7. PubMed ID: 12769550.
    Abstract:
    We show that strong constraints on supramolecular structure in amyloid fibrils can be obtained from solid-state nuclear magnetic resonance measurements on samples with uniformly 13C-labeled segments. The measurements exploit two-dimensional (2D) 13C-13C exchange spectroscopy in conjunction with high-speed magic angle spinning, with proton-mediated exchange of 13C nuclear spin magnetization as recently demonstrated by Baldus and co-workers (J. Am. Chem. Soc. 2002, 124, 9704-9705). Proton-mediated 2D exchange spectra of fibrils formed by residues 16-22 of the 40-residue Alzheimer's beta-amyloid peptide show strong nonsequential, intermolecular cross-peaks between alpha-carbons that dictate an antiparallel beta-sheet structure in which residue 16+k aligns with residue 22-k. The strong alpha/alpha cross-peaks are absent from conventional, direct 2D exchange spectra. Proton-mediated 2D exchange spectra of fibrils formed by residues 11-25 indicate an antiparallel beta-sheet structure with a pH-dependent intermolecular alignment. In contrast, proton-mediated 2D exchange spectra of fibrils formed by the full-length beta-amyloid peptide are consistent with a parallel beta-sheet structure. These data show that the supramolecular structure of amyloid fibrils is not determined by the amino acid sequence at the level of 7-residue or 15-residue segments. The proton-mediated 2D exchange spectra additionally demonstrate that the intermolecular alignment in the beta-sheets of these amyloid fibrils is highly ordered, with no detectable evidence for "misalignment" defects.
    [Abstract] [Full Text] [Related] [New Search]