These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Nucleotide excision repair from site-specifically platinum-modified nucleosomes.
    Author: Wang D, Hara R, Singh G, Sancar A, Lippard SJ.
    Journal: Biochemistry; 2003 Jun 10; 42(22):6747-53. PubMed ID: 12779329.
    Abstract:
    Nucleotide excision repair is a major cellular defense mechanism against the toxic effects of the anticancer drug cisplatin and other platinum-based chemotherapeutic agents. In this study, mononucleosomes were prepared containing either a site-specific cis-diammineplatinum(II)-DNA intrastrand d(GpG) or a d(GpTpG) cross-link. The ability of the histone core to modulate the excision of these defined platinum adducts was investigated as a model for exploring the cellular response to platinum-DNA adducts in chromatin. Comparison of the extent of repair by mammalian cell extracts of free and nucleosomal DNA containing the same platinum-DNA adduct reveals that the nucleosome significantly inhibits nucleotide excision repair. With the GTG-Pt DNA substrate, the nucleosome inhibits excision to about 10% of the level observed with free DNA, whereas with the less efficient GG-Pt DNA substrate the nucleosome inhibited excision to about 30% of the level observed with free DNA. The effects of post-translational modification of histones on excision of platinum damage from nucleosomes were investigated by comparing native and recombinant nucleosomes containing the same intrastrand d(GpTpG) cross-link. Excision from native nucleosomal DNA is approximately 2-fold higher than the level observed with recombinant material. This result reveals that post-translational modification of histones can modulate nucleotide excision repair from damaged chromatin. The in vitro system established in this study will facilitate the investigation of platinum-DNA damage by DNA repair processes and help elucidate the role of specific post-translational modification in NER of platinum-DNA adducts at the physiologically relevant nucleosome level.
    [Abstract] [Full Text] [Related] [New Search]