These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Interaction of inhibitors with muscle phosphofructokinase. Author: Colombo G, Tate PW, Girotti AW, Kemp RG. Journal: J Biol Chem; 1975 Dec 25; 250(24):9404-12. PubMed ID: 127795. Abstract: The interaction of several inhibitors with muscle phosphofructokinase has been studied by both equilibrium binding measurements and kinetic analysis. At low concentrations of citrate a maximum of 1 mol is bound per mol of enzyme protomer. Tight binding requires MgATP and very weak binding is observed in the absence of either magnesium ion or ATP. ITP at low concentrations cannot replace ATP. In the presence of MgATP and at pH 7.0, the dissociation constant for the enzyme-citrate complex is 20 muM. At 50 muM citrate and excess magnesium ion, the concentration of ATP required to give half-maximal binding of citrate is approximately 3 muM . Both P-enolpyruvate and 3-P-glycerate compete for the binding of citrate and the estimated Ki values are 480 and 52 muM, respectively. Creatine-P, another inhibitor of muscle phosphofructokinase, does not compete with the binding of citrate. Measurement of the equilibrium binding of ATP shows that citrate, 3-P-glycerate, P-enolpyruvate, and creatine-P all increase the affinity of enzyme for MgATP with the concentration required to give an effect increasing in the order given. In kinetic studies, citrate, 3-P-glycerate and P-enolpyruvate each act synergistically with ATP to inhibit the phosphofructokinase reaction. This is indicated by the observation that the three metabolites do not inhibit the enzyme with ITP as the phosphoryl donor and that they inhibit at ATP concentrations that are not themselves inhibitory. Furthermore, the sensitivity to the inhibitors increases with increasing ATP concentrations. Striking differences in the extent of inhibition can be seen by varying the order of addition of assay components. Preincubation of the enzyme with ATP and citrate, 3-P-glycerate, or P-enolpyruvate results in greater inhibition than when the inhibitor is added after the reaction is started with fructose-6-P. Furthermore, the inhibition is reversed partially 10 to 15 min after the addition of fructose-6-P. This phenomenon is particularly striking with creatine-P as the inhibitor. Very high concentrations of this inhibitor are required to show any effect if the inhibitor is added after fructose-6-P. These effects are interpreted as reflecting slow conformational changes between an active form with high affinity for fructose-6-P and an inactive, or less active, conformation that binds the inhibitors. Citrate, 3-P-glycerate, P-enolpyruvate, and creatine-P increase the rate of the phosphofructokinase at subsaturating concentrations of MgITP. The results indicate a common binding site on the enzyme for citrate, 3-P-glycerate, and P-enolpyruvate that is distinct from the ATP inhibitory site. An additional site (or sites) for creatine-P is indicated. All four inhibitors act synergistically with ATP by increasing the affinity of the enzyme for MgATP at an inhibitory site. The inhibitors appear also to increase the affinity of the catalytic nucleoside triphosphate site for substrate.[Abstract] [Full Text] [Related] [New Search]