These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Energy transduction in Escherichia coli. Genetic alteration of a membrane polypeptide of the (Ca2+,Mg2+)-ATPase.
    Author: Simoni RD, Shandell A.
    Journal: J Biol Chem; 1975 Dec 25; 250(24):9421-7. PubMed ID: 127796.
    Abstract:
    Recent genetic analyses of the membrane components involved in energy transduction in Escherichia coli have concentrated on the (Ca2+, Mg2+)-ATPase complex (EC 3.6.1.3). Many mutants have been described with altered biochemical properties and defects in energy-requiring processes such as oxidative phosphorylation, transhydrogenase activity, and active transport of several solutes. This report describes the isolation of a mutant strain of E. coli that is defective in several energy-requiring processes. The strain BG-31 was obtained by "localized mutagenesis" using phage P1c1. The mutation maps at approximately 73.5 min on the E. coli chromosome. Reversion and suppression analyses indicate that the defect is the result of a single amber mutation. This strain is unable to utilize succinate, D-lactate, or malate for growth. Mutant cells are unable to couple the energy derived from the hydrolysis of ATP to the active transport of proline, although coupling of energy derived from electron transport to solute transport appears normal when examined in both cells and isolated membrane vesicles. Isolated membranes of the mutant are unable to couple the energy derived from the hydrolysis of ATP to transhydrogenase activity while they can utilize the energy generated from electron transport to drive transhydrogenase activity. Extracts of strain BG-31 have normal levels of (Ca2+, Mg2+)-ATPase activity. The ATPase portion of the complex, bacterial F1 (BF1), is poorly attached to the membrane portion of the complex. In vitro reconstitution of transhydrogenase activity with stripped membrane fractions and crude preparations of BF1 localize the defect in strain BG-31 to the membrane portion of the complex. Analysis of membranes of the strain BG-31 by acrylamide gel electrophoresis in the presence of sodium dodecyl sulfate demonstrate the absence of a single polypeptide of molecular weight about 54,000 and the appearance of a new polypeptide of lower molecular weight, about 25,000. Analysis of a spontaneous revertant of BG-31 shows complete restoration of the parental phenotype including the gel patterns. The characterization of this mutant provides the first demonstration of the consequences of a structural gene mutation on a polypeptide in the membrane portion of the complex and represents the initial stages in what we hope will be the biochemical definition and functional characterization of this important energy-transducing system.
    [Abstract] [Full Text] [Related] [New Search]