These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Impact of p53 knockout and topotecan treatment on gene expression profiles in human colon carcinoma cells: a pharmacogenomic study.
    Author: Daoud SS, Munson PJ, Reinhold W, Young L, Prabhu VV, Yu Q, LaRose J, Kohn KW, Weinstein JN, Pommier Y.
    Journal: Cancer Res; 2003 Jun 01; 63(11):2782-93. PubMed ID: 12782583.
    Abstract:
    To uncover transcriptional stress responses related to p53, we used cDNA microarrays (National Cancer Institute Oncochips comprising 6500 different genes) to characterize the gene expression profiles of wild-type p53 HCT-116 cells and an isogenic p53 knockout counterpart after treatment with topotecan, a specific topoisomerase I inhibitor. The use of the p53 knockout cells had the advantage over p53-overexpressing systems in that p53 activation is mediated physiologically. RNA was extracted after low (0.1 microM)- and high (1 microM)-dose topotecan at multiple time points within the first 6 h of treatment. To facilitate simultaneous study of the p53 status and pharmacological effects on gene expression, we developed a novel "cross-referenced network" experimental design and used multiple linear least squares fitting to optimize estimates of relative transcript levels in the network of experimental conditions. Approximately 10% of the transcripts were up- or down-regulated in response to topotecan in the p53+/+ cells, whereas only 1% of the transcripts changed in the p53-/- cells, indicating that p53 has a broad effect on the transcriptional response to this stress. Individual transcripts and their relationships were analyzed using clustered image maps and by a novel two-dimensional analysis/visualization, gene expression map, in which each gene expression level is represented as a function of both the genotypic/phenotypic difference (i.e., p53 status) and the treatment effect (i.e., of topotecan dose and time of exposure). Overall, drug-induced p53 activation was associated with a coherent genetic program leading to cell cycle arrest and apoptosis. We identified novel p53-induced and DNA damage-induced genes (the proapoptotic SIVA gene and a set of transforming growth factor beta-related genes). Genes induced independently of p53 included the antiapoptotic cFLIP gene and known stress genes related to the mitogen-activated protein kinase pathway and the Fos/Jun pathway. Genes that were negatively regulated by p53 included members of the antiapoptotic protein chaperone heat shock protein 70 family. Finally, among the p53-dependent genes whose expression was independent of drug treatment was S100A4, a small Ca(2+)-binding protein that has recently been implicated in p53 binding and regulation. The new experimental design and gene expression map analysis introduced here are applicable to a wide range of studies that encompass both treatment effects and genotypic or phenotypic differences.
    [Abstract] [Full Text] [Related] [New Search]