These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Dynamic interaction between suspended particles and defects in a nematic liquid crystal.
    Author: Grollau S, Abbott NL, de Pablo JJ.
    Journal: Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 1):051703. PubMed ID: 12786160.
    Abstract:
    Insertion of spherical particles into a uniform nematic liquid crystal gives rise to the formation of topological defects. In the present work, we investigate how a spherical particle accompanied by its topological defects interacts with neighboring disclination lines. We perform two- and three-dimensional dynamic simulations to analyze the effect of a particle on the annihilation process of two disclination lines. The dynamics of the liquid crystal is described by a time-dependent evolution equation on the symmetric traceless order parameter that includes some of the salient features of liquid crystalline materials: excluded volume effects, or equivalently, short-range order elasticity and long-range order elasticity. At the surface of the particle, the liquid crystal is assumed to exhibit strong homeotropic anchoring. The particle is located between two disclination lines of topological charges +1/2 and -1/2. Two-dimensional simulations indicate that the topological defects bound to the particle mediate an interaction between the two disclination lines which increases the attraction between them. This result is confirmed by three-dimensional simulations that provide a complete description of the director field and of the order parameter around the particle. These simulations indicate that a spherical particle between two disclination lines can be surrounded by a Saturn ring, and suggest that the dynamic behavior of disclination lines could be used to report the structure of a defect around the particle.
    [Abstract] [Full Text] [Related] [New Search]