These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Inhibition of rat respiratory-tract cytochrome P-450 isozymes following inhalation of m-Xylene: possible role of metabolites. Author: Vaidyanathan A, Foy JW, Schatz R. Journal: J Toxicol Environ Health A; 2003 Jun 27; 66(12):1133-43. PubMed ID: 12791539. Abstract: Xylene is used as a solvent in paints, cleaning agents, and gasoline. Exposure occurs primarily by inhalation. The volatility and lipophilicity of the xylenes make the lung and nasal mucosa the primary target organs. m-Xylene (m-XYL) has been shown to alter cytochrome P-450 (CYP) activity in an organ- and isozyme-specific manner. The purpose of this work was to determine if the metabolism of m-XYL to the inhibitory metabolite m-tolualdehyde (m-ALD) is the cause of inhibition of CYP isozymes following in vivo inhalation exposure to m-XYL (100, 300 ppm), 3-methylbenzyl alcohol (3-MBA) (50, 100 ppm), or m-ALD (50, 100 ppm). A single 6-h inhalation exposure of rats to m-XYL inhibited pulmonary CYPs 2B1, 2E1, and 4B1 in a dose-dependent manner. Inhalation of 3-MBA inhibited pulmonary CYPs 2B1 and 4B1 in a dose-dependent manner. m-ALD inhibited pulmonary CYPs 2B1 and 2E1 in a dose-dependent manner, while 4B1 activity was increased dose dependently. Nasal mucosa CYP 2B1 and 2E1 activity was inhibited following exposure to m-XYL dose dependently, 3-MBA inhibited nasal mucosa CYPs 2E1 and 4B1 dose dependently. CYPs 2B1, 2E1, and 4B1 were inhibited in a dose-dependent fashion following inhalation of m-ALD. Following high-performance liquid chromatography (HPLC) analysis, m-ALD was detected after in vivo exposure to m-XYL, m-ALD, and 3-MBA in a dose-dependent manner, with highest m-ALD levels in the nasal mucosa and lung. Alteration of cytochrome P-450 activity by m-XYL could result in increased or decreased toxicity, changing the metabolic profiles of xenobiotics in coexposure scenarios in an organ-specific manner.[Abstract] [Full Text] [Related] [New Search]