These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Field monitoring and evaluation of innovative solutions for cleaning storm water runoff. Author: Papiri S, Ciaponi C, Capodaglio A, Collivignarelli C, Bertanza G, Swartling F, Crow M, Fantozzi M, Valcher P. Journal: Water Sci Technol; 2003; 47(7-8):327-34. PubMed ID: 12793697. Abstract: Urbanization increases the variety and amount of pollutants transported to receiving waters. Sediment from development and new construction; oil, grease, and toxic chemicals from automobiles; nutrients and pesticides from turf management and gardening; viruses and bacteria from failing septic systems; road salts; and heavy metals are examples of pollutants generated in urban areas. Sediments and solids constitute the largest volume of pollutant loads to receiving waters in urban areas. When runoff enters storm drains, it carries many of these pollutants with it. In older cities, this polluted runoff is often released directly into open waterways without any treatment. Increased pollutant loads can harm fish and wildlife populations, kill native vegetation, foul drinking water supplies, and make recreational areas unsafe. The objective of the study, performed by University of Pavia (Italy), University of Brescia (Italy) and GreenTechTexas International (US), reported herein is to evaluate the use of an innovative stormwater technology (EcoDräin) to reduce pollution due to urban runoff in existing urban areas. The paper describes the methodology and the results achieved with tests conducted in laboratory in Pavia University in Italy and in two pilot areas in Italy and in Australia to investigate the EcoDräin's effectiveness for oil and heavy metals retention and sediment trapping. In the tests performed in a marina near Sydney in Australia a reduction has been achieved in oil and grease concentration higher than 95% and a reduction in metal concentration (particularly Copper, Lead and Zinc) close to 98%. The paper also describes the methodology of the analysis on the absorbing material after its use and the consequent determination of the most efficient and environmentally safe way to dispose of consummated absorbent.[Abstract] [Full Text] [Related] [New Search]