These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Chronic centrifugation (hypergravity) disrupts the circadian system of the rat.
    Author: Holley DC, DeRoshia CW, Moran MM, Wade CE.
    Journal: J Appl Physiol (1985); 2003 Sep; 95(3):1266-78. PubMed ID: 12794036.
    Abstract:
    The present study was conducted to evaluate the response of rat deep body temperature (DBT) and gross locomotor activity (LMA) circadian rhythms to acute hypergravity onset and adaptation to chronic (14 day) hypergravity exposure over three gravity intensities (1.25, 1.5, and 2 G). Centrifugation of unanesthetized naive animals resulted in a dramatic acute decrease in DBT (-1.45, -2.40, and -3.09 degrees C for the 1.25, 1.5, and 2.0 G groups, respectively). LMA was suppressed for the duration of centrifugation (vs. control period); the percent decrease for each group on days 12-14, respectively, was 1.0 G, -15.2%, P = not significant; 1.25 G, -26.9%, P < 0.02; 1.5 G, -44.5%, P < 0.01; and 2.0 G, -63.1%, P < 0.002. The time required for DBT and LMA circadian rhythmic adaptation and stabilization to hypergravity onset increased from 1.25 to 2.0 G in all circadian metrics except daily means. Periodicity analysis detected the phenomenon of circadian rhythm splitting, which has not been reported previously in response to chronic hypergravity exposure. Our analysis documents the disruptive and dose-dependent effects of hypergravity on circadian rhythmicity and the time course of adaptation to 14-day chronic centrifugation exposure.
    [Abstract] [Full Text] [Related] [New Search]