These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Isovolume hypertonic solutes (sodium chloride or mannitol) in the treatment of refractory posttraumatic intracranial hypertension: 2 mL/kg 7.5% saline is more effective than 2 mL/kg 20% mannitol.
    Author: Vialet R, Albanèse J, Thomachot L, Antonini F, Bourgouin A, Alliez B, Martin C.
    Journal: Crit Care Med; 2003 Jun; 31(6):1683-7. PubMed ID: 12794404.
    Abstract:
    OBJECTIVE: To evaluate the clinical benefit of increasing the osmotic load of the hypertonic solution administered for the treatment of refractory intracranial hypertension episodes in patients with severe head injury. DESIGN: Prospective, randomized study. SETTINGS: A trauma center in a university hospital. PATIENTS: Twenty consecutive patients with head trauma and persistent coma who required infusions of an osmotic agent to treat episodes of intracranial hypertension resistant to well-conducted standard modes of therapy were studied. Intracranial hypertension was considered refractory when it persisted despite deep sedation, optimal hemodynamic status, and, in some patients, drainage of cerebral spinal fluid. INTERVENTIONS: Patients were randomly assigned to receive isovolume infusions of either 7.5% hypertonic saline solution (2400 mOsm/kg/H(2)O) or 20% mannitol (1160 mOsm/kg/H(2)O). The patients were given 2 mL/kg (body weight) of either solution, i.e., 361 +/- 13 mOsm of saline or 175 +/- 12 mOsm of mannitol per injection. MEASUREMENTS AND MAIN RESULTS: The main variables studied were the number and the duration of episodes of intracranial hypertension per day during the study period, which was stopped after the last episode of intracranial hypertension was recorded from intracranial pressure monitoring or after the allocated treatment failure. Patients in the HHS group were monitored for 7 +/- 5 days and those in the mannitol group for 7 +/- 6 days (not significant). The rate of failure for each treatment was also evaluated. Failure was defined as the persistence of intracranial hypertension despite two successive infusions of the same osmotic agent. The mean number of osmotic solute infusions was 3.7 +/- 5.3 in the mannitol group and 3.3 +/- 4.1 in the hypertonic saline solution group (not significant). The mean number (6.9 +/- 5.6 vs. 13.3 +/- 14.6 episodes) of intracranial hypertension episodes per day and the daily duration (67 +/- 85 vs. 131 +/- 123 min) of intracranial hypertension episodes were significantly lower in the hypertonic saline solution group (p <.01). The rate of clinical failure was also significantly lower in the hypertonic saline solution group: 1 of 10 patients vs. 7 of 10 patients (p <.01). CONCLUSION: In this study, when a hypertonic solute was required for the treatment of refractory intracranial hypertension episodes in patients with severe head trauma, increasing the osmotic load by giving 2 mL/kg (body weight) of 7.5% saline (361 +/- 13 mOsm) was more effective than giving 2 mL/kg (body weight) of 20% mannitol (175 +/- 12 mOsm). Within the limitations of the present study, these data suggest that giving 2 mL/kg hypertonic saline solution (approximately 480 mOsm/70 kg body weight) is an effective and safe initial treatment for intracranial hypertension episodes in head-trauma patients when osmotherapy is indicated.
    [Abstract] [Full Text] [Related] [New Search]