These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Chloride channels in cultured human skeletal muscle are regulated by G proteins.
    Author: Fahlke C, Zachar E, Häussler U, Rüdel R.
    Journal: Pflugers Arch; 1992 Sep; 421(6):566-71. PubMed ID: 1279515.
    Abstract:
    The regulation of Cl- channels in human myoballs by G proteins was studied using whole-cell and inside-out patch recordings. After perfusion of the cell with 0.1 mM GTP[gamma S], the specific Cl- conductance, GCl, at standard resting potential (-85 mV) was increased from 5.9 microS/cm2 to 103 microS/cm2, and the kinetics upon stepping the potential to positive values was changed from an activating current with very slow inactivation to a fast inactivating current with no potential-dependent activation. These effects were not affected by the simultaneous blockade of several signal cascades involving G proteins. Addition of the protein kinase blockers PKI (25 microM), H8 (10 microM), or of the phospholipase-A2-blocking agent quinacrine (10 microM), had not much influence on these GTP[gamma S] effects. Buffering of the intracellular Ca2+ concentration (0.1 microM) or addition of the Ca2+/calmodulin antagonist trifluoperazine (50 microM) was also without effect. Pre-incubation of the cells with pertussis toxin or with cholera toxin did not change GCl. In excised inside-out patches voltage-clamped at -85 mV, application of GTP[gamma S] influenced the "intermediate" Cl- channel, the Cl- channel type having the highest density in these cells, by increasing the number of transitions in a half-conductance state. The probability of the channel being in one of the two conducting states rose from 0.015 to 0.67, and the kinetics of the single-channel currents was changed so that, on average, it was similar to the whole-cell current kinetics seen after application of GTP[gamma S]. It is concluded that a G protein is directly interacting with these channels.
    [Abstract] [Full Text] [Related] [New Search]