These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Hartmann-Shack technique and refraction across the horizontal visual field. Author: Atchison DA, Scott DH, Charman WN. Journal: J Opt Soc Am A Opt Image Sci Vis; 2003 Jun; 20(6):965-73. PubMed ID: 12801164. Abstract: We compared refractions across the horizontal visual field, based on different analyses of wave aberration obtained with a Hartmann-Shack instrument. The wave aberrations had been determined for 6-mm-diameter pupils up to at least the sixth Zernike order in five normal subjects [J. Opt. Soc. Am. A 19, 2180 (2002)]. The polynomials were converted into refractions based on 6-mm pupils and second-order Zernike aberrations (6 mm/2nd order), 3-mm pupils and second-order aberrations (3 mm/2nd order), 1-mm pupils and second-order aberrations (1 mm/2nd order), and 6-mm pupils with both second- and fourth-order aberrations (6 mm/4th order). The 3-mm/2nd-order and 6-mm/2nd-order refractions differed by as much as 0.9 D in mean sphere on axis, but the differences reduced markedly toward the edges of the visual field. The cylindrical differences between these two analyses were small at the center of the visual field (<0.3 D) but increased into the periphery to be greater than 1.0 D for some subjects. Much smaller differences in mean sphere and cylinder were found when 3-mm/2nd-order refractions and either the 1-mm/2nd-order refractions or the 6-mm/4th-order refractions were compared. The results suggest that, for determining refractions based on wave aberration data with large pupils, similar results occur by either restricting the analysis to second-order Zernike aberrations with a smaller pupil such as 3 mm or using both second- and fourth-order Zernike aberrations. Since subjective refraction is largely independent of the pupil size under photopic conditions, objective refractions based on either of these analyses may be the most useful.[Abstract] [Full Text] [Related] [New Search]