These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Inhibition of taurolithocholate 3-sulfate-induced apoptosis by cyclic AMP in rat hepatocytes involves protein kinase A-dependent and -independent mechanisms. Author: Graf D, Reinehr R, Kurz AK, Fischer R, Häussinger D. Journal: Arch Biochem Biophys; 2003 Jul 01; 415(1):34-42. PubMed ID: 12801510. Abstract: The mechanisms underlying the inhibition of bile acid-induced apoptosis by cyclic AMP (cAMP) were studied in 24-h-cultured rat hepatocytes. Taurolithocholate 3-sulfate (TLCS, 100 micromol/l) led to a sustained activation of mitogen activated protein (MAP) kinases (JNK, p38(MAPK), and ERKs), dephosphorylation of protein kinase B (PKB), activation of caspases 3 and 8, and hepatocyte apoptosis. cAMP prevented TLCS-induced apoptosis, shifted the persistent TLCS-induced MAP kinase response to a transient pattern, and prevented PKB dephosphorylation. TLCS-induced CD95 and TRAIL receptor-2 trafficking to the plasma membrane were significantly inhibited. Blockade of protein kinase A (PKA) abolished the inhibitory effect of cAMP on TLCS-induced CD95 membrane targeting, but not TRAIL receptor-2 membrane targeting, PKB and MAP kinase responses. H89, an inhibitor of PKA, had no effect on cAMP-induced inhibition of TLCS-triggered poly(ADP) ribose polymerase (PARP) cleavage and caspase activation, but abolished the cAMP-induced inhibition of TLCS-triggered TUNEL- and Annexin V staining. It is concluded that cAMP inhibits bile acid-induced apoptosis via PKA-dependent and -independent mechanisms.[Abstract] [Full Text] [Related] [New Search]