These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Comparative effects of methylmercury and Hg(2+) on human neuronal N- and R-type high-voltage activated calcium channels transiently expressed in human embryonic kidney 293 cells.
    Author: Hajela RK, Peng SQ, Atchison WD.
    Journal: J Pharmacol Exp Ther; 2003 Sep; 306(3):1129-36. PubMed ID: 12805476.
    Abstract:
    Expression cDNA clones of alpha1B-1 or alpha1E-3 subunits coding for human neuronal N-(Cav2.2) or R-subtype (Cav2.3) Ca2+ channels, respectively, was combined with alpha2-bdelta and beta3-a Ca2+ channel subunits, and transfected into human embryonic kidney cells for transient expression to determine whether specific types of neuronal voltage-sensitive Ca2+ channels are affected differentially by methylmercury (MeHg) and Hg2+. For both Ca2+ channel subtypes, MeHg (0.125-5.0 microM) or Hg2+ (0.1-5 microM) caused a time- and concentration-dependent reduction of current. MeHg caused an initial, rapid component and a subsequent more gradual component of inhibition. The rapid component of block was completed between 100 and 150 s after beginning treatment. At 0.125 to 1.25 microM, MeHg caused a more gradual decline in current. Apparent IC50 values were 1.3 and 1.1 microM for MeHg, and 2.2 and 0.7 microM for Hg2+ on N- and R-types, respectively. For N-type current, effects of Hg2+ were initially greater on the peak current than on the sustained current remaining at the end of a test pulse; subsequently, Hg2+ blocked both components of current. For R-type current, Hg2+ affected peak and sustained current approximately equally. Kinetics of inactivation also seemed to be affected by Hg2+ in cells expressing N-type but not R-type current. Washing with MeHg-free solution could not reverse effects of MeHg on either type of current. The effect of Hg2+ on N- but not R-type current was partially reversed by Hg2+-free wash solution. Therefore, different types of Ca2+ channels have differential susceptibility to neurotoxic mercurials even when expressed in the same cell type.
    [Abstract] [Full Text] [Related] [New Search]