These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: G beta gamma mediates the interplay between tubulin dimers and microtubules in the modulation of Gq signaling.
    Author: Popova JS, Rasenick MM.
    Journal: J Biol Chem; 2003 Sep 05; 278(36):34299-308. PubMed ID: 12807915.
    Abstract:
    Agonist stimulation causes tubulin association with the plasma membrane and activation of PLC beta 1 through direct interaction with, and transactivation of, G alpha q. Here we demonstrate that G beta gamma interaction with tubulin down-regulates this signaling pathway. Purified G beta gamma, alone or with phosphatidylinositol 4,5-bisphosphate (PIP2), inhibited carbachol-evoked membrane recruitment of tubulin and G alpha q transactivation by tubulin. Polymerization of microtubules elicited by G beta gamma overrode tubulin translocation to the membrane in response to carbachol stimulation. G beta gamma sequestration of tubulin reduced the inhibition of PLC beta 1 observed at high tubulin concentration. G beta 1 gamma 2 interacted preferentially with tubulin-GDP, whereas G alpha q was transactivated by tubulin-GTP. Prenylation of the gamma 2 polypeptide was required for G beta gamma/tubulin interaction. Both confocal microscopy and coimmunoprecipitation studies revealed the spatiotemporal pattern of G beta gamma/tubulin interaction during carbachol stimulation of neuroblastoma SK-N-SH cells. In resting cells G beta gamma localized predominantly at the cell membrane, whereas tubulin was found in well defined microtubules in the cytosol. Within 2 min of agonist exposure, a subset of tubulin translocated to the plasma membrane and colocalized with G beta. Fifteen min post-carbachol addition, tubulin and G beta colocalized in vesicle-like structures in the cytosol. G beta/tubulin colocalization increased after pretreatment of cells with the microtubule-depolymerizing agent, colchicine, and was inhibited by taxol. Taxol also inhibited carbachol-induced PIP2 hydrolysis. It is suggested that G beta gamma/tubulin interaction mediates internalization of membrane-associated tubulin at the offset of PLC beta 1 signaling. Newly cytosolic G beta gamma/tubulin complexes might promote microtubule polymerization attenuating further tubulin association with the plasma membrane. Thus G protein-coupled receptors might evoke G alpha and G beta gamma to orchestrate regulation of phospholipase signaling by tubulin dimers and control of cell shape by microtubules.
    [Abstract] [Full Text] [Related] [New Search]