These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Neuronal necrosis inhibition by insulin through protein kinase C activation.
    Author: Hamabe W, Fujita R, Ueda H.
    Journal: J Pharmacol Exp Ther; 2003 Oct; 307(1):205-12. PubMed ID: 12808000.
    Abstract:
    In the serum-free culture of rat embryonic neurons, most neurons rapidly died by necrosis, which was revealed by propidium iodide (PI)-positive staining as early as 3 h after the start of culture and by marked membrane disruption and mitochondrial swelling in transmission electron microscopic (TEM) analysis. However, neither nuclear condensation/fragmentation stained with Hoechst 33342 nor activated caspase-3-like immunoreactivity was observed. In the serum-deprived culture, on the other hand, neurons showed apoptotic features, such as caspase-3 activation and nuclear damages in TEM analysis. Insulin at relatively higher concentrations, up to 100 microg/ml, ameliorated the rapid decrease in survival activity measured with 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt WST-8 assay and PI staining in the serum-free culture, despite the fact that brain-derived neurotrophic factor and insulin-like growth factor-I had no survival effect even at concentrations up to 100 microg/ml. Insulin-induced survival effects were abolished by the protein kinase C (PKC) inhibitor calphostin C but not by the phosphatidyl inositol-3-OH-kinase inhibitor wortmannin or the mitogen-activated protein kinase inhibitors PD98059 or U0126. Insulin significantly stimulated the PKC activity in cell lysates and suppressed the mitochondrial swelling and membrane disruption in TEM analysis in a calphostin C-reversible manner. All of these findings suggest that insulin inhibited the neuronal necrosis resistant to known neurotrophic factors under the serum-free culture through PKC mechanisms.
    [Abstract] [Full Text] [Related] [New Search]