These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Dopaminergic mechanisms of neural plasticity in respiratory control: transgenic approaches. Author: Huey KA, Szewczak JM, Powell FL. Journal: Respir Physiol Neurobiol; 2003 May 30; 135(2-3):133-44. PubMed ID: 12809614. Abstract: Data supporting the hypothesis that dopamine-2 receptors (D(2)-R) contribute to time-dependent changes in the hypoxic ventilatory response (HVR) during acclimatization to hypoxia are briefly reviewed. Previous experiments with transgenic animals (D(2)-R 'knockout' mice) support this hypothesis (J. Appl. Physiol. 89 (2000) 1142). However, those experiments could not determine (1) if D(2)-R in the carotid body, the CNS, or both were involved, or (2) if D(2)-R were necessary during the acclimatization to hypoxia versus some time prior to chronic hypoxia, e.g. during a critical period of development. Additional experiments on C57BL/6J mice support the idea that D(2)-R are critical during the period of exposure to hypoxia for normal ventilatory acclimatization. D(2)-R in carotid body chemoreceptors predominate under control conditions to inhibit normoxic ventilation, but excitatory effects of D(2)-R, presumably in the CNS, predominate after acclimatization to hypoxia. The inhibitory effects of D(2)-R in the carotid body are reset to operate primarily under hypoxic conditions in acclimatized rats, thereby optimizing O(2)-sensitivity.[Abstract] [Full Text] [Related] [New Search]