These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Distinct regions of human glycophorin A enhance human red cell anion exchanger (band 3; AE1) transport function and surface trafficking.
    Author: Young MT, Tanner MJ.
    Journal: J Biol Chem; 2003 Aug 29; 278(35):32954-61. PubMed ID: 12813056.
    Abstract:
    Human red cell glycophorin A (GPA) enhances the expression of band 3 anion transport activity at the cell surface of Xenopus oocytes. This effect of GPA could occur in two ways, enhancement of band 3 anion transport function or enhancement of band 3 trafficking to the cell surface. We have examined the GPA effect using GPA mutants. We compared the sequences of GPA and its homolog glycophorin B (GPB; which does not facilitate band 3 cell-surface activity or trafficking) to identify candidate regions of GPA for study. We constructed several GPA or GPB mutants, including naturally occurring GPA/GPB hybrid molecules and insertion, deletion, and substitution mutants. We analyzed the effects of the mutant proteins on band 3-specific chloride transport and surface presentation using co-expression in Xenopus oocytes. We find that the C-terminal cytoplasmic tail of GPA enhances trafficking of band 3 to the cell surface, whereas the extracellular residues 68-70 increase the specific anion transport activity of band 3. In addition, examination of the oligomerization of GPA mutants showed that single amino acid substitutions N-terminal to the transmembrane domain greatly reduce SDS-stable GPA dimer formation, implying that regions outside the transmembrane domain of GPA are important for GPA dimer formation.
    [Abstract] [Full Text] [Related] [New Search]