These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Identification of functional arginines in human angiogenin by site-directed mutagenesis.
    Author: Shapiro R, Vallee BL.
    Journal: Biochemistry; 1992 Dec 15; 31(49):12477-85. PubMed ID: 1281426.
    Abstract:
    Chemical modifications of human angiogenin had suggested that arginines are essential for its ribonucleolytic activity [Shapiro, R., Weremowicz, S., Riordan, J. F., & Vallee, B. L. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 8783-8787]. Each of the six arginines within or near angiogenin's catalytic or cell-binding sites--i.e., those at positions 5, 31, 32, 33, 66, and 70--was therefore mutated to alanine. Two of these residues, Arg-5 and Arg-33, indeed play a role, albeit noncrucial, in enzymatic activity, although neither one is implicated in the abolition of activity by arginine reagents. R5A-angiogenin, while nearly fully active toward dinucleotides, is one-fourth as active as angiogenin toward tRNA, suggesting that Arg-5 may participate in the binding of peripheral components of the substrate. In contrast, the activity of R33A-angiogenin toward both polynucleotide and dinucleotide substrates is reduced similarly, reflecting a decrease in kcat. These results, together with its position in the calculated three-dimensional structure of angiogenin, imply an indirect role for Arg-33 in catalysis. Three arginines are important for angiogenesis: mutation of Arg-5, Arg-33, or Arg-66 dramatically reduces the angiogenic potency of angiogenin on the chicken embryo chorioallantoic membrane. Arg-66 lies within a segment previously proposed to be part of a cell-surface receptor binding site. Arg-5 and Arg-33 are outside of this site as defined at present, and the decreased angiogenicity of R5A- and R33A-angiogenin may be a consequence of their reduced ribonucleolytic activities.(ABSTRACT TRUNCATED AT 250 WORDS)
    [Abstract] [Full Text] [Related] [New Search]