These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Differential substrate specificity of monoamine oxidase in the rat heart and renal cortex.
    Author: Guimarães JT, Vindis C, Soares-da-Silva P, Parini A.
    Journal: Life Sci; 2003 Jul 11; 73(8):955-67. PubMed ID: 12818349.
    Abstract:
    Although it is known that substrate specificities differ with species and within each species with the tissues, in the rat heart no natural substrate was found for MAO-B. beta-phenylethylamine (beta-PEA) has always been considered the "endogenous" substrate of MAO B. We thought worthwide to evaluate the effect of Ro 41-1049 and lazabemide, both members of a class of highly selective, mechanism-based and reversible inhibitors for MAO-A and MAO B, respectively on the metabolization of beta-PEA by the rat heart. Also the lack of molecular data on rat heart MAOs, prompted us to better characterize rat heart MAOs, both kinetically and using molecular biology techniques. K(m) values for deamination of beta-PEA in the rat heart were 13-fold those in the kidney, by contrast, K(m) values for deamination of 5-HT were quite similar in both tissues. Unexpectedly, the selective MAO-A inhibitor Ro 41-1049 was by far the most potent inhibitor of beta-PEA (20 microM) deamination in the rat heart, while clorgyline, another MAO A inhibitor, and lazabemide, a MAO B inhibitor, had intermediate efficacy; selegiline was found unable to inhibit deamination of beta-PEA. In the rat renal cortex lazabemide and selegiline both inhibited beta-PEA deamination. The reduction of beta-PEA concentration to just 200 nM, the use of heart membranes instead of tissue homogenates or the use of heart membranes pre-treated with 1% digitonine failed to change this pattern of inhibition. Semicarbazide was found not to alter deamination of beta-PEA. Western blot showed the presence of both isoforms (55 kd and 61 kd) in the renal cortex. In the heart there was a predominance of the A form, the B form being undetected. The RT-PCR products for both MAO-A and MAO-B, were found to have the expected sizes. In conclusion, we found mRNA for MAO-B but were unable to detect the protein itself or its activity when using beta-PEA as the substrate.
    [Abstract] [Full Text] [Related] [New Search]