These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Probing the binding pocket and endocytosis of a G protein-coupled receptor in live cells reported by a spin-labeled substance P agonist. Author: Shafer AM, Bennett VJ, Kim P, Voss JC. Journal: J Biol Chem; 2003 Sep 05; 278(36):34203-10. PubMed ID: 12821667. Abstract: To probe the molecular nature of the binding pocket of a G protein-coupled receptor and the events immediately following the binding and activation, we have modified the substance P peptide, a potent agonist for the neurokinin-1 receptor, with a nitroxide spin probe specifically attached at Lys-3. The agonist properties and binding affinity of the spin-labeled substance P are similar to the native peptide. Using electron paramagnetic resonance (EPR) spectroscopy, the substance P analogue is capable of reporting the microenvironment found in the binding pocket of the receptor. The EPR spectrum of bound peptide indicates that the Lys-3 portion of the agonist is highly flexible. In addition, we detect a slight increase in the mobility of the bound peptide in the presence of a non-hydrolyzable analogue of GTP, indicative of the alternate conformational states described for this class of receptor. The down-regulation of neurokinin-tachykinin receptors is accomplished by a rapid internalization of the activated protein. Thus, it was also of interest to establish whether spin-labeled substance P could serve as a real time reporter for endocytosis. Our findings show the receptor agonist is efficiently endocytosed and the loss of EPR signal upon internalization provides a real time monitor of endocytosis. The rapid loss of signal suggests that endosomal trafficking vesicles maintain a reductive environment. Whereas the reductive capacity of the lysosome has been established, our findings indicate this capacity in early endosomes as well.[Abstract] [Full Text] [Related] [New Search]