These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Organization and slow axonal transport of cytoskeletal proteins under normal and regenerating conditions. Author: Tashiro T, Komiya Y. Journal: Mol Neurobiol; 1992; 6(2-3):301-11. PubMed ID: 1282336. Abstract: The organization of the axonal cytoskeleton was investigated by analyzing the solubility and transport profile of the major cytoskeletal proteins in motor axons of the rat sciatic nerve under normal and regenerating conditions. When extracted with the Triton-containing buffer at low temperature, 50% of tubulin and 30% of actin were recovered in the insoluble form resistant to further depolymerizing treatments. Most of this cold-insoluble form was transported in slow component a (SCa), the slower of the two subcomponents of slow axonal transport, whereas the cold-soluble form showed a biphasic distribution between SCa and SCb (slow component b). Changes in slow transport during regeneration were studied by injuring the nerve either prior to (experiment I) or after (experiment II) radioactive labeling. In experiment I where the transport of proteins synthesized in response to injury was examined, selective acceleration of SCb was detected together with an increase in the relative proportion of this component. In experiment II where the response of the preexisting cytoskeleton was examined, a shift from SCa to SCb of the cold-soluble form was observed. The differential distribution and response of the two forms of tubulin and actin suggest that the cold-soluble form may be more directly involved in axonal transport.[Abstract] [Full Text] [Related] [New Search]