These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Family 19 chitinase from rice (Oryza sativa L.): substrate-binding subsites demonstrated by kinetic and molecular modeling studies.
    Author: Sasaki C, Itoh Y, Takehara H, Kuhara S, Fukamizo T.
    Journal: Plant Mol Biol; 2003 May; 52(1):43-52. PubMed ID: 12825688.
    Abstract:
    A family 19 chitinase (OsChia1c, class I) from rice, Oryza sativa L., and its chitin-binding domain-truncated mutant (OsChia1c deltaCBD, class II) were produced by the Pichia expression system, and the hydrolytic mechanism toward N-acetylglucosamine hexasaccharide [(GlcNAc)6] was investigated by HPLC analysis of the reaction products. The profile of the time-course of (GlcNAc)6 degradation obtained by OsChia1c was identical to that obtained by OsChia1c deltaCBD, indicating that the chitin-binding domain does not significantly participate in oligosaccharide hydrolysis. From the theoretical analysis of the reaction time-course of OsChia1c deltaCBD, the free energy changes of sugar residue binding were estimated to be -0.4, -4.7, +3.4, -0.5, -2.3, and -1.0 kcal/mol for the individual subsites of (-3), (-2), (-1), (+1), (+2), and (+3), respectively. The hexasaccharide substrate appears to bind to the enzyme through interactions at the high-affinity sites, (-2) and (+2), and the sugar residues at both ends more loosely bind to the corresponding subsites, (-3) and (+3). The docking study of (GlcNAc)6 with the modeled structure of OsChia1c deltaCBD supported the subsite structure estimated from the experimental time-course of hexasaccharide degradation. Since the class II chitinase from barley seeds was reported to possess a similar subsite structure from (-3) to (+3) and a similar free energy distribution, substrate-binding mode of plant chitinases of this class would be similar to each other.
    [Abstract] [Full Text] [Related] [New Search]