These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The Dictyostelium class I myosin, MyoD, contains a novel light chain that lacks high-affinity calcium-binding sites. Author: De La Roche MA, Lee SF, Côté GP. Journal: Biochem J; 2003 Sep 15; 374(Pt 3):697-705. PubMed ID: 12826013. Abstract: Dictyostelium discoideum MyoD, a long-tailed class I myosin, co-purified with two copies of a 16 kDa light chain. Sequence analysis of the MyoD light chain showed it to be a unique protein, termed MlcD, that shares 44% sequence identity with Dictyostelium calmodulin and 43% sequence identity with Acanthamoeba castellanii myosin IC light chain. MlcD comprises four EF-hands; however, EF-hands 2-4 contain mutations in key Ca2+-co-ordinating residues that would be predicted to impair Ca2+ binding. Electrospray ionization MS of MlcD in the presence of Ca2+ and La3+ showed the presence of one major and one minor metal-binding site. MlcD contains a single tryptophan residue (Trp39), the fluorescence intensity of which was quenched upon addition of Ca2+ or Mg2+, yielding apparent dissociation constants ( K'(d)) of 52 microM for Ca2+ and 450 microM for Mg2+. The low affinity of MlcD for Ca2+ indicates that it cannot function as a sensor of physiological Ca2+. Ca2+ did not affect the binding of MlcD to MyoD or to either of the two MyoD IQ (Ile-Gln) motifs. FLAG-MlcD expressed in Dictyostelium formed a complex with MyoD, but not with the two other long-tailed Dictyostelium myosin I isoenzymes, MyoB and MyoC. Through its specific association with the Ca2+-insensitive MlcD, MyoD may exhibit distinct regulatory properties that distinguish it from myosin I isoenzymes with calmodulin light chains.[Abstract] [Full Text] [Related] [New Search]