These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Preservation of endothelium-dependent and Nomega-nitro-L-arginine methyl ester- and indomethacin-resistant arterial relaxation in high-cholesterol-diet fed rabbits by treatment with fluvastatin, an HMG-CoA reductase inhibitor. Author: Mitani H, Kimura M. Journal: J Cardiovasc Pharmacol; 2003 Jul; 42(1):55-62. PubMed ID: 12827027. Abstract: This study was designed to test the hypothesis that fluvastatin preserves endothelium-dependent and nitric oxide (NO)-independent relaxations in arterial preparations from rabbits fed a high-cholesterol diet in the absence of any cholesterol-lowering action. Rabbits were fed a 0.5% high-cholesterol diet for 12 weeks and then fed the high-cholesterol diet with/without fluvastatin 2 mg/kg/d for an additional 8 weeks. Plasma total and LDL-cholesterol concentrations were not affected by fluvastatin treatment. Endothelium-dependent and NO-mediated relaxation elicited by acetylcholine and A23187 in both the thoracic aorta and femoral artery was impaired in the high-cholesterol group but not in the fluvastatin-treated group. Endothelium-independent relaxation elicited by sodium nitroprusside was similar among the 3 groups. Preincubation of thoracic aortas from each of the 3 groups with Nomega-nitro-L-arginine methyl ester (L-NAME) and indomethacin completely abolished the relaxant response to acetylcholine. In contrast, the maximal response to acetylcholine (1 microM) in femoral artery was only partially reversed in the presence of L-NAME and indomethacin. Fluvastatin treatment preserved the acetylcholine-induced L-NAME and indomethacin-resistant relaxation impaired in the femoral artery from the high-cholesterol diet group. These results suggest that fluvastatin treatment preserves endothelium-dependent, NO-independent function as well as NO-dependent function in absence of its lipid lowering-action.[Abstract] [Full Text] [Related] [New Search]